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Unit 1: HTML Fundamentals  

HTML provides basic and advanced concepts of HTML. If you are new in learning HTML, then 
you can learn HTML from basic to a professional level and after learning HTML with CSS and 
JavaScript you will be able to create your own interactive and dynamic website. But Now We 
will focus on HTML only from unit 1 to unit 4 and in unit 5 will cover JavaScript. 

The major points or characteristics of HTML are given below: 

o HTML stands for Hypertext Markup Language. 

o HTML is used to create web pages and web applications. 

o HTML is widely used language on the web. 

o We can create a static website by HTML only. 

o Technically, HTML is a Markup language rather than a programming language. 

What is HTML 

HTML is an acronym which stands for Hyper Text Markup Language which is used for creating 
web pages and web applications. Let's see what is meant by Hypertext Markup Language, and 
Web page. 

Hyper Text: HyperText simply means "Text within Text." A text has a link within it, is a 
hypertext. Whenever you click on a link which brings you to a new webpage, you have clicked 
on a hypertext. HyperText is a way to link two or more web pages (HTML documents) with each 
other. 

Markup language: A markup language is a computer language that is used to apply layout and 
formatting conventions to a text document. Markup language makes text more interactive and 
dynamic. It can turn text into images, tables, links, etc. 

Web Page: A web page is a document which is commonly written in HTML and translated by a 
web browser. A web page can be identified by entering an URL. A Web page can be of the static 
or dynamic type. With the help of HTML only, we can create static web pages. 

Hence, HTML is a markup language which is used for creating attractive web pages with the 
help of styling, and which looks in a nice format on a web browser. An HTML document is made 
of many HTML tags and each HTML tag contains different content. 

 



 

Note: Inside <body> tag write <h1> and <p > tags  

Description of HTML Example 

<!DOCTYPE>: It defines the document type or it instruct the browser about the version of 
HTML. 

<html > :This tag informs the browser that it is an HTML document. Text between html tag 
describes the web document. It is a container for all other elements of HTML except 
<!DOCTYPE> 

<head>: It should be the first element inside the <html> element, which contains the 
metadata(information about the document). It must be closed before the body tag opens. 

<title>: As its name suggested, it is used to add title of that HTML page which appears at the 
top of the browser window. It must be placed inside the head tag and should close 
immediately. (Optional) 

<body> : Text between body tag describes the body content of the page that is visible to the 
end user. This tag contains the main content of the HTML document. 

<h1> : Text between <h1> tag describes the first level heading of the webpage. 

<p> : Text between <p> tag describes the paragraph of the webpage. 

 



Brief History of HTML 

In the late 1980's , a physicist, Tim Berners-Lee who was a contractor at CERN, proposed a 
system for CERN researchers. In 1989, he wrote a memo proposing an internet based hypertext 
system. 

Tim Berners-Lee is known as the father of HTML. The first available description of HTML was a 
document called "HTML Tags" proposed by Tim in late 1991. The latest version of HTML is 
HTML5, which we will learn later in this tutorial. 

 

HTML Versions 

Since the time HTML was invented there are lots of HTML versions in market, the brief 
introduction about the HTML version is given below: 

HTML 1.0: The first version of HTML was 1.0, which was the barebones version of HTML 
language, and it was released in1991. 

HTML 2.0: This was the next version which was released in 1995, and it was standard language 
version for website design. HTML 2.0 was able to support extra features such as form-based file 
upload, form elements such as text box, option button, etc. 

HTML 3.2: HTML 3.2 version was published by W3C in early 1997. This version was capable of 
creating tables and providing support for extra options for form elements. It can also support a 
web page with complex mathematical equations. It became an official standard for any browser 
till January 1997. Today it is practically supported by most of the browsers. 

HTML 4.01: HTML 4.01 version was released on December 1999, and it is a very stable version 
of HTML language. This version is the current official standard, and it provides added support 
for stylesheets (CSS) and scripting ability for various multimedia elements. 

HTML5 : HTML5 is the newest version of HyperText Markup language. The first draft of this 
version was announced in January 2008. There are two major organizations one is W3C (World 
Wide Web Consortium), and another one is WHATWG( Web Hypertext Application Technology 
Working Group) which are involved in the development of HTML 5 version, and still, it is under 
development. 

 

Features or characteristics of HTML 

1) It is a very easy and simple language. It can be easily understood and modified. 



2) It is very easy to make an effective presentation with HTML because it has a lot of formatting 
tags. 

3) It is a markup language, so it provides a flexible way to design web pages along with the text. 

4) It facilitates programmers to add a link on the web pages (by html anchor tag), so it 
enhances the interest of browsing of the user. 

5) It is platform-independent because it can be displayed on any platform like Windows, Linux, 
and Macintosh, etc. 

6) It facilitates the programmer to add Graphics, Videos, and Sound to the web pages which 
makes it more attractive and interactive. 

7) HTML is a case-insensitive language, which means we can use tags either in lower-case or 
upper-case. 

NOTE: It is recommended to write all tags in lower-case for consistency, readability, etc. 

 

HTML text Editors:  

o An HTML file is a text file, so to create an HTML file we can use any text editors. 

o Text editors are the programs which allow editing in a written text, hence to create a 

web page we need to write our code in some text editor. 

o There are various types of text editors available which you can directly download, but 

for a beginner, the best text editor is Notepad (Windows) or TextEdit (Mac). 

o After learning the basics, you can easily use other professional text editors which 

are, Notepad++, Sublime Text, Vim, etc. 

o In our tutorial, we will use Notepad and sublime text editor. Following are some easy 

ways to create your first web page with Notepad, and sublime text. 

A. HTML code with Notepad. (Recommended for Beginners) 

Notepad is a simple text editor and suitable for beginners to learn HTML. It is available in all 
versions of Windows, from where you easily access it. 

Step 1: Open Notepad (Windows) 



 

Step 2: Write code in HTML 

 

Step 3: Save the HTML file with .htm or .html extension. 



 

Step 4: Open the HTML page in your web browser. 

To run the HTML page, you need to open the file location, where you have saved the file and 
then either double-click on file or click on open with option 

 



 

 

 

Note: You can execute HTML file in any browser, but there are some tags which are not 

supported by Some Web browser. 

 

Commonly used web browsers: 

Web Browsers are software installed on your PC. To access the Web, you need a web browser, 
such as Netscape Navigator, Microsoft Internet Explorer or Mozilla Firefox. 

Currently you must be using any sort of Web browser while you are navigating through our site 
tutorialspoint.com. On the Web, when you navigate through pages of information, this is 
commonly known as web browsing or web surfing. 

There are four leading web browsers − Explorer, Firefox, Netscape, and Safari, but there are 
many others browsers available. You might be interested in knowing Complete Browser 
Statistics. Now we will see these browsers in bit more detail. 

While developing a site, we should try to make it compatible to as many browsers as possible. 
Especially sites should be compatible to major browsers like Explorer, Firefox, Chrome, 
Netscape, Opera, and Safari. 

Internet Explorer 

Internet Explorer (IE) is a product from software giant Microsoft. This is the most commonly 
used browser in the universe. This was introduced in 1995 along with Windows 95 launch and it 
has passed Netscape popularity in 1998. 

You can download a latest version of this browser by clicking here → Download Internet 
Explorer 

http://www.microsoft.com/windows/products/winfamily/ie/default.mspx
http://www.microsoft.com/windows/products/winfamily/ie/default.mspx


Google Chrome 

This web browser is developed by Google and its beta version was first released on September 
2, 2008 for Microsoft Windows. Today, chrome is known to be one of the most popular web 
browser with its global share of more than 50%. 

You can download a latest version of this browser by clicking here → Download Google 
Chrome 

Mozilla Firefox 

Firefox is a new browser derived from Mozilla. It was released in 2004 and has grown to be the 
second most popular browser on the Internet. 

You can download a latest version of this browser by clicking here → Download Firefox 

Safari 

Safari is a web browser developed by Apple Inc. and included in Mac OS X. It was first released 
as a public beta in January 2003. Safari has very good support for latest technologies like 
XHTML, CSS2 etc. 

You can download a latest version of this browser by clicking here → Download Safari 

Opera 

Opera is smaller and faster than most other browsers, yet it is full- featured. Fast, user-friendly, 
with keyboard interface, multiple windows, zoom functions, and more. Java and non Java-
enabled versions available. Ideal for newcomers to the Internet, school children, handicap and 
as a front-end for CD-Rom and kiosks. 

You can download a latest version of this browser by clicking here → Download Opera 

 

Building blocks of HTML 

An HTML document consist of its basic building blocks which are: 

o Tags: An HTML tag surrounds the content and apply meaning to it. It is written between 

< and > brackets. 

o Attribute: An attribute in HTML provides extra information about the element, and it is 

applied within the start tag. An HTML attribute contains two fields: name & value. 

Syntax 

https://www.google.com/chrome/browser/desktop/
https://www.google.com/chrome/browser/desktop/
http://www.mozilla.com/en-US/firefox/
http://www.apple.com/safari/
http://www.opera.com/


1. <tag name  attribute_name= " attr_value"> content </ tag name>    

o Elements: An HTML element is an individual component of an HTML file. In an HTML 

file, everything written within tags are termed as HTML elements. 

 

Example: 

<!DOCTYPE html>   

<html>   

  <head>   

    <title>The basic building blocks of HTML</title>   

 </head>   

  <body>   

       <h2>The building blocks</h2>   

       <p>This is a paragraph tag</p>   

       <p style="color: red">The style is attribute of paragraph tag</p>   

       <span>The element contains tag, attribute and content</span>   

  </body>   

</html>      

Output: 



The building blocks 

This is a paragraph tag 

The style is attribute of paragraph tag 

The element contains tag, attribute and content 

 

HTML Tags 

HTML tags are like keywords which define that how web browser will format and display the 
content. With the help of tags, a web browser can distinguish between an HTML content and a 
simple content. HTML tags contain three main parts: opening tag, content and closing tag. But 
some HTML tags are unclosed tags. 

When a web browser reads an HTML document, browser reads it from top to bottom and left 
to right. HTML tags are used to create HTML documents and render their properties. Each 
HTML tags have different properties. 

An HTML file must have some essential tags so that web browser can differentiate between a 
simple text and HTML text. You can use as many tags you want as per your code requirement. 

o All HTML tags must enclosed within < > these brackets. 

o Every tag in HTML performs different tasks. 

o If you have used an open tag <tag>, then you must use a close tag </tag> (except some 

tags) 

 

Syntax 

<tag> content </tag> 

 

HTML Tag Examples 

Note: HTML Tags are always written in lowercase letters. The basic HTML tags are given below: 

<p> Paragraph Tag </p> 

<h2> Heading Tag </h2> 



<b> Bold Tag </b> 

<i> Italic Tag </i> 

<u> Underline Tag</u> 

Test it Now 

 

Unclosed HTML Tags 

Some HTML tags are not closed, for example br and hr. 

<br> Tag: br stands for break line, it breaks the line of the code. 

<hr> Tag: hr stands for Horizontal Rule. This tag is used to put a line across the webpage. 

 

HTML Meta Tags 

DOCTYPE, title, link, meta and style 

 

HTML Text Tags 

<p>, <h1>, <h2>, <h3>, <h4>, <h5>, <h6>, <strong>, <em>, <abbr>, <acronym>, <address>, 
<blockquote>, <cite>, <q>, <code>, <ins>, <del>, <pre>,  and <br> 

 

HTML Link Tags 

<a>  

 

HTML Image and Object Tags 

<img>, <area>, <map>, <param> and <object> 

 

https://www.javatpoint.com/oprweb/test.jsp?filename=htmltags1


HTML List Tags 

<ul>, <ol>, <li>, <dl>, <dt> and <dd> 

 

HTML Table Tags 

table, tr, td, th, tbody, thead, tfoot, col, colgroup and caption 

 

HTML Form Tags 

form, input, textarea, select, option, button, label, fieldset and legend 

 

HTML Scripting Tags 

script and noscript 

Note: We will see examples using these tags in later charters. 

 

HTML Attribute 

o HTML attributes are special words which provide additional information about the 

elements or attributes are the modifier of the HTML element. 

o Each element or tag can have attributes, which defines the behaviour of that element. 

o Attributes should always be applied with start tag. 

o The Attribute should always be applied with its name and value pair. 

o The Attributes name and values are case sensitive, and it is recommended by W3C that 

it should be written in Lowercase only. 

o You can add multiple attributes in one HTML element, but need to give space between 

two attributes. 

Syntax 

<element attribute_name="value">content</element>   
 



HTML Heading 

A HTML heading or HTML h tag can be defined as a title or a subtitle which you want to display 
on the webpage. When you place the text within the heading tags <h1>.........</h1>, it is 
displayed on the browser in the bold format and size of the text depends on the number of 
heading. 

There are six different HTML headings which are defined with the <h1> to <h6> tags, from 
highest level h1 (main heading) to the least level h6 (least important heading). 

h1 is the largest heading tag and h6 is the smallest one. So h1 is used for most important 
heading and h6 is used for least important. 

Headings in HTML helps the search engine to understand and index the structure of web 
page. 

Note: The main keyword of the whole content of a webpage should be display by h1 heading 

tag. 

See this example: 

<h1>Heading no. 1</h1>   

<h2>Heading no. 2</h2>   

<h3>Heading no. 3</h3>   

<h4>Heading no. 4</h4>   

<h5>Heading no. 5</h5>   

<h6>Heading no. 6</h6>   
 

 

 

Output: 

Heading no. 1 

Heading no. 2 



Heading no. 3 

Heading no. 4 

Heading no. 5 

Heading no. 6 

 

HTML Paragraph 

HTML paragraph or HTML p tag is used to define a paragraph in a webpage. Let's take a simple 
example to see how it work. It is a notable point that a browser itself add an empty line before 
and after a paragraph. An HTML <p> tag indicates starting of new paragraph. 

Note: If we are using various <p> tags in one HTML file then browser automatically adds a single 

blank line between the two paragraphs. 

See this example: 

1. <p>This is first paragraph.</p>   

2. <p>This is second paragraph.</p>   

3. <p>This is third paragraph.</p>   
Test it Now 

Output: 

This is first paragraph. 

This is second paragraph. 

This is third paragraph. 

 

Space inside HTML Paragraph 

If you put a lot of spaces inside the HTML p tag, browser removes extra spaces and extra line 
while displaying the page. The browser counts number of spaces and lines as a single one. 

<p>   

I am   

going to provide   

you a tutorial on HTML   

https://www.javatpoint.com/oprweb/test.jsp?filename=htmlparagraph1


and hope that it will   

be very beneficial for you.   

</p>   

<p>   

Look, I put here a lot   

of spaces                    but            I know, Browser will ignore it.   

</p>   

<p>   

You cannot determine the display of HTML</p>   

<p>because resized windows may create different result.   

</p>   

Output: 

I am going to provide you a tutorial on HTML and hope that it will be very beneficial for you. 

Look, I put here a lot of spaces but I know, Browser will ignore it. 

You cannot determine the display of HTML 

because resized windows may create different result. 

As you can see, all the extra lines and unnecessary spaces are removed by the browser. 

How to Use <br> and <hr> tag with paragraph? 

An HTML <br> tag is used for line break and it can be used with paragraph elements. Following 
is the example to show how to use <br> with <p> element. 

Example: 

<!DOCTYPE html>   

<html>   

     <head>   

    </head>   

  <body>   

      <h2> Use of line break with pragraph tag</h2>   

          <p><br>Papa and mama, and baby and Dot,   

     <br>Willie and me?the whole of the lot   

               <br>Of us all went over in Bimberlie's sleigh,   



                 <br>To grandmama's house on Christmas day.   

          </p>   

   </body>   

</html>   

 

An HTML <hr> tag is used to apply a horizontal line between two statements or two 
paragraphs. Following is the example which is showing use of <hr> tag with paragraph. 

Example: 

<!DOCTYPE html>   

<html>   

 <head>   

    </head>   

 <body>   

   <h2> Example to show a horizontal line with paragraphs</h2>   

     <p> An HTML hr tag draw a horizontal line and separate two paragraphs with that line.<hr> it

 will start a new paragraph.   

    </p>   

  </body>   

</html>   

Output: 



 
 
 

Changing appearance of Text tags: 

Formatting elements were designed to display special types of text: 

 <b> - Bold text 
 <strong> - Important text 
 <i> - Italic text 
 <em> - Emphasized text 
 <mark> - Marked text 
 <small> - Smaller text 
 <del> - Deleted text 
 <ins> - Inserted text 
 <sub> - Subscript text 
 <sup> - Superscript text 

 

HTML <b> and <strong> Elements 

The HTML <b> element defines bold text, without any extra importance. 

Example 

<b>This text is bold</b> 

The HTML <strong> element defines text with strong importance. The content inside is typically 
displayed in bold. 



Example 

<strong>This text is important!</strong> 

HTML <i> and <em> Elements 

The HTML <i> element defines a part of text in an alternate voice or mood. The content inside is 
typically displayed in italic. 

Tip: The <i> tag is often used to indicate a technical term, a phrase from another language, a 
thought, a ship name, etc. 

Example 

<i>This text is italic</i> 

The HTML <em> element defines emphasized text. The content inside is typically displayed in 
italic. 

Tip: A screen reader will pronounce the words in <em> with an emphasis, using verbal stress. 

Example 

<em>This text is emphasized</em> 

HTML <small> Element 

The HTML <small> element defines smaller text: 

Example 

<small>This is some smaller text.</small> 

HTML <mark> Element 

The HTML <mark> element defines text that should be marked or highlighted: 

Example 

<p>Do not forget to buy <mark>milk</mark> today.</p> 

HTML <del> Element 

The HTML <del> element defines text that has been deleted from a document. Browsers will 
usually strike a line through deleted text: 



Example 

<p>My favorite color is <del>blue</del> red.</p> 

HTML <ins> Element 

The HTML <ins> element defines a text that has been inserted into a document. Browsers will 
usually underline inserted text: 

Example 

<p>My favorite color is <del>blue</del> <ins>red</ins>.</p> 

HTML <sub> Element 

The HTML <sub> element defines subscript text. Subscript text appears half a character below 
the normal line, and is sometimes rendered in a smaller font. Subscript text can be used for 
chemical formulas, like H2O: 

Example 

<p>This is <sub>subscripted</sub> text.</p>

 

HTML <sup> Element 

The HTML <sup> element defines superscript text. Superscript text appears half a character 
above the normal line, and is sometimes rendered in a smaller font. Superscript text can be 
used for footnotes, like WWW[1]: 

Example 

<p>This is <sup>superscripted</sup> text.</p> 

HTML Comments 

HTML comments are not displayed in the browser, but they can help document your HTML 
source code. 

HTML Comment Tag 

You can add comments to your HTML source by using the following syntax: 

<!-- Write your comments here --> 

Notice that there is an exclamation point (!) in the start tag, but not in the end tag. 



Note: Comments are not displayed by the browser, but they can help document your HTML 
source code. 

 

Add Comments 

With comments you can place notifications and reminders in your HTML code: 

Example 

<!-- This is a comment --> 

 

<p>This is a paragraph.</p> 

 

<!-- Remember to add more information here --> 

Hide Content 

Comments can be used to hide content. 

This can be helpful if you hide content temporarily: 

Example 

<p>This is a paragraph.</p> 

 

<!-- <p>This is another paragraph </p> --> 

 

<p>This is a paragraph too.</p> 

You can also hide more than one line. Everything between the <!-- and the --> will be hidden 
from the display. 

Background Color 

You can set the background color for HTML elements: 

Hello World 

 

 

Background color feature 

 



Example 

<h1 style="background-color:DodgerBlue;">Hello World</h1> 

<p style="background-color:Tomato;">Lorem ipsum...</p> 

Text Color 

You can set the color of text: 

Hello World 

Welcome to HTML 

How are you… 

Example 

<h1 style="color:Tomato;">Hello World</h1> 

<p style="color:DodgerBlue;">Welcome to HTML</p> 

<p style="color:MediumSeaGreen;">How are you...</p> 

 

 

Non-breaking Space 

A commonly used entity in HTML is the non-breaking space: &nbsp; 

A non-breaking space is a space that will not break into a new line. 

Two words separated by a non-breaking space will stick together (not break into a new line). 
This is handy when breaking the words might be disruptive. 

Examples: 

 § 10 
 10 km/h 
 10 PM 

Another common use of the non-breaking space is to prevent browsers from truncating spaces 
in HTML pages. 

If you write 10 spaces in your text, the browser will remove 9 of them. To add real spaces to 
your text, you can use the &nbsp; character entity. 



Tip: The non-breaking hyphen (&#8209;) is used to define a hyphen character (-) that does not 
break into a new line. 

 

HTML <hr> Tag 

Example 

Use the <hr> tag to define thematic changes in the content: 

<h1>The Main Languages of the Web</h1> 

 

<p>HTML is the standard markup language for creating Web pages. HTML describes the 

structure of a Web page, and consists of a series of elements. HTML elements tell the browser 

how to display the content.</p> 

 

<hr> 

 

<p>CSS is a language that describes how HTML elements are to be displayed on screen, paper, 

or in other media. CSS saves a lot of work, because it can control the layout of multiple web 

pages all at once.</p> 

 

<hr> 

 

<p>JavaScript is the programming language of HTML and the Web. JavaScript can change HTML 

content and attribute values. JavaScript can change CSS. JavaScript can hide and show HTML 

elements, and more.</p> 

Definition and Usage 

The <hr> tag defines a thematic break in an HTML page (e.g. a shift of topic). 

The <hr> element is most often displayed as a horizontal rule that is used to separate content 
(or define a change) in an HTML page. 

Example 

Align a <hr> element (with CSS): 

<hr style="width:50%;text-align:left;margin-left:0"> 

Example 

A noshaded <hr> (with CSS): 

https://www.w3schools.com/charsets/ref_utf_punctuation.asp


<hr style="height:2px;border-width:0;color:gray;background-color:gray"> 

Example 

Set the height of a <hr> element (with CSS): 

<hr style="height:30px"> 

Example 

Set the width of a <hr> element (with CSS): 

<hr style="width:50%"> 

 

 

 

 

UNIT 4 

 What is JavaScript? 

JavaScript (JS) is a light-weight object-oriented programming language which is used by several 
websites for scripting the webpages. It is an interpreted, full-fledged programming language 
that enables dynamic interactivity on websites when applied to an HTML document.  

It was introduced in the year 1995 for adding programs to the webpages in the Netscape 
Navigator browser. Since then, it has been adopted by all other graphical web browsers. With 
JavaScript, users can build modern web applications to interact directly without reloading the 
page every time.  

Although, JavaScript has no connectivity with Java programming language. The name was 
suggested and provided in the times when Java was gaining popularity in the market.  

Another popular use of JS: In addition to web browsers, databases such as Couch DB and 
Mongo DB use JavaScript as their scripting and query language. 

Features of JavaScript 

There are following features of JavaScript: 



1. All popular web browsers support JavaScript as they provide built-in execution 

environments. 

2. JavaScript follows the syntax and structure of the C programming language. Thus, it is a 

structured programming language. 

3. JavaScript is a weakly typed language, where certain types are implicitly cast (depending 

on the operation). 

4. JavaScript is an object-oriented programming language that uses prototypes rather than 

using classes for inheritance. 

5. It is a light-weighted and interpreted language. 

6. It is a case-sensitive language. 

7. JavaScript is supportable in several operating systems including, Windows, macOS, etc. 

8. It provides good control to the users over the web browsers. 

JavaScript History 

JavaScript was invented by Brendan Eich in 1995. 

It was developed for Netscape 2, and became the ECMA-262 standard in 1997. 

After Netscape handed JavaScript over to ECMA, the Mozilla foundation continued to develop 
JavaScript for the Firefox browser. Mozilla's latest version was 1.8.5. (Identical to ES5). 

Internet Explorer (IE4) was the first browser to support ECMA-262 Edition 1 (ES1). 

Year ECMA Browser 

1995   JavaScript was invented by Brendan Eich 

1997   JavaScript became an ECMA standard (ECMA-262) 

1997 ES1 ECMAScript 1 was released 



1998 ES2 ECMAScript 2 was released 

2009 ES5 ECMAScript 5 was released 

2015 ES6 ECMAScript 6 was released 

2017 ES6 Full support for ES6 in Firefox 54 

2017 ES6 Full support for ES6 in Edge 15 

2018 ES6 Full support for ES6 in all browsers ** 

The main difference between client-side and server-side scripting is given below. 

Basis Client-side Scripting Server-side Scripting 

Primary 
Function  

The primary function of client-side scripting 
is to provide the requested output to the 
end-user  

 The primary function of server-side scripting 
is to manipulate and give access to the 
required database as per request.   

Uses  
The client side is used as the front end, 
where the user gets to see what we have 
browsed.  

The server side is used as a back end where 
data is processed and is not visible to the 
client user.   

Code allowance 
On the client side, the user is allowed to 
access the code written after verifying the 
user’s need.  

Server-side scripting allows the back-end 
developer to hide the source code from the 
user.  

Processing  
The client-side does not need any 
interaction with the server.  

Server-side scripting on the other hand is all 
about communicating with the servers.  

Function 
Used for the visibility and getting out the 
required data from servers’ database  

Used for the customization or modification of 
the data to change the website dynamically.   

  Dependability  
Client-side scripting depends upon the 
user’s browser version.  

Serve-side does not depend on the client.  



Basis Client-side Scripting Server-side Scripting 

Security  
This way of scripting is less secure than 
Server-side scripting because of the 
accessibility of code provided to the client.  

Server-side scripting is considered a more 
secure way of working on a web application  

  Connectivity   
The client-side does not connect to the 
database at the webserver.  

The server side helps connect with the 
database, which is already stored in the 
server database.  

File Access  
It does have any access to the files present 
on the web servers. But we have the option 
to upload files from the front end  

It has total access to the files which are stored 
in the web database server.  

Occurrence  
It occurs when the browser processes all 
the codes, and then it reacts according to 
the client’s query.  

It only acts after the client initiates the 
browsing request.  

Running  It runs on the end-user’s system.  It runs on the web server.  

Languages     
HTML, JavaScript, and CSS are used to 
display the request  

PHP, Python, Ruby, Node js are some of the 
programming languages used on server-side  

 

Phases of web Development 

 
Web Development refers to a term that includes all the processes involved in developing a web 
project or website. It contains the various phases such as planning, designing, Implementation 
& testing, and launching of the web project. The web development process requires a team of 
experts responsible for implementing the different tasks needed to create a website. 

 
The various stages that are needed in order to develop a web project in web development are 
as following: 

Strategy: The first step in the web development process for a developer is to make a strategy 
for developing a web page or web site. In the strategy phase, web developer has to done the 
following: 
 Deciding goals and objectives 
 Developing team 



 Make the appropriate analysis associated with problem and review the analysis 
 Formulate a list of tasks 
 Proposal of project to web team for developing 

 
 

Specification and Design: After the strategy-making, the next step in the web development 
process is to develop a planned work. Web developer has to determine the schedule and the 
specifications. The tasks in this phase are as follows. 
 Developing approach 
 Selection of front end(client side) or back end(server side) programming languages  
 Planning of contents needed for use 
 Making of rough design for project 
 Making of final design from rough design, if there is no considerable modification in rough 

design. 
 Frame a prototype(dummy website) of project for developing 
 Test the prototype 
If prototype is accomplish, then go to next phase phase-3 otherwise repeat the phase 2 until 
prototype is accomplish. 

 

Production of desired result: In this phase of the web development process the actual 
functional site is built. After the proper testing of the prototype, the developer has to work on 
developing the actual live web project. The actual live web project is built according to the 
requirements of the client. Web developer has to consider all the situations from the design 
phase to create all the features in the web project.  
This phase involves both front end development and back end development of the website.  
Front end development comprises of the writing codes with the basic technologies like HTML, 
CSS, JavaScript etc. according to the web standards. It generally starts by developing the home 
page first and then other pages. 
Back end development is also completed in this phase by installing and configuring the content 
management systems, databases, and frameworks using PHP, Python, Ruby, SQL etc.  
 
After completing all the steps that were finalized in the strategy and design phase by which the 
original website becomes functional, it is tested in the next phase. 
 
Testing and Maintenance: Testing is an important phase in the web development process. 
Testing is performed by the developers and testers to ensure the client’s requirements after 
completion of the web project.  
 
Registration with ISP: After completion of the Testing and Maintenance and removing all the 
bugs from the project, the next step or phase is to register the web project with the regional ISP 
to make the web project legal.  
The client has to select and decide the ISP which provides domain name registration and web 
hosting services.  
 



Launch: This is the last phase of the web development process. Project is launched after getting 
registered with ISP. After launching, web project is publicly accessed by the users of the 
particular domain. The tasks performed in the launch phase are as follows. 
 Migration of data 
 Launching of server 
 Merging of code 
 Redirecting domain name 
 

  

Application of JavaScript 

JavaScript is used to create interactive websites. It is mainly used for: 

o Client-side validation, 

o Dynamic drop-down menus, 

o Displaying date and time, 

o Displaying pop-up windows and dialog boxes (like an alert dialog box, confirm dialog box 

and prompt dialog box), 

o Displaying clocks etc. 

NOTE: Javascript example is easy to code. JavaScript provides 3 places to put the JavaScript 
code:  
 
a. within body tag 
b. within head tag 
c. external JavaScript file(.js file) 
 

Example1(within body Tag) 

<html> 
<head><title>My first JS program</title></head> 
    <body> 
    <h2>Welcome to JavaScript</h2> 
       <script> 
       document.write("JavaScript is a simple language for learners"); 
       </script> 
     </body> 
</html> 
 
Output: 
Welcome to JavaScript 



JavaScript is a simple language for learners 

 

Highlights of Example1: 

The document.write() function is used to display dynamic content through JavaScript. We will 

learn about document object in detail later. 

 

 

 

 

 

Example 2: within head section 

<html>   
<head>   
      <script>   
      function msg() 
         {   
       alert("Hello Javatpoint");   
         }   
      </script>   
</head>   
<body>   
<p>Welcome to Javascript</p>   
<form>   
<input type="button" value="click" onclick="msg()"/>   
</form>   
</body>   
</html>   
 
Output: 

 
 

How to add comments in JS: The JavaScript comments are meaningful way to deliver message. 
It is used to add information about the code, warnings or suggestions so that end user can 
easily interpret the code. 



The JavaScript comment is ignored by the JavaScript engine i.e. embedded in the browser. 

 
Advantages of JavaScript comments: 
There are mainly two advantages of JavaScript comments. 
To make code easy to understand: It can be used to elaborate the code so that end user can 
easily understand the code. 
To avoid the unnecessary code: It can also be used to avoid the code being executed. 
Sometimes, we add the code to perform some action. But after sometime, there may be need 
to disable the code. In such case, it is better to use comments.  
 
Types of JavaScript Comments 
There are two types of comments in JavaScript. 
Single-line Comment 
Multi-line Comment 

 
JavaScript Single line Comment 
It is represented by double forward slashes (//). It can be used before and after the statement. 
 
Let’s see the example of single-line comment i.e. added before the statement. 
<script>   
// It is single line comment   
document.write("hello javascript");   
</script>   
 

 
JavaScript Multi line Comment 
It can be used to add single as well as multi line comments. So, it is more convenient. 
It is represented by forward slash with asterisk then asterisk with forward slash at the end. 
For example: 
/* your code here */   
It can be used before, after and middle of the statement. 
 
<script>   
/* It is multi line comment.   
It will not be displayed */   
document.write("example of javascript multiline comment");   
</script>   
 

JavaScript Variable: 
A JavaScript variable is simply a name of storage location. There are two types of variables in 
JavaScript : local variable and global variable. 
 
There are some rules while declaring a JavaScript variable (also known as identifiers). 
1. Name must start with a letter (a to z or A to Z), underscore( _ ), or dollar( $ ) sign. 



2. After first letter we can use digits (0 to 9), for example value1. 
3. JavaScript variables are case sensitive, for example x and X are different variables. 
 
Example: 
 
<html> 
<head><title>Variable in JS program</title></head> 
<body> 
<script>   
var x = 10;   
var y = 20;   
var z=x+y;   
document.write(z);   
</script>   
</body> 
</html> 
 
Output: 30 
 
Operators in Java Script: 

There are following types of operators in JavaScript. 

1. Arithmetic Operators 

2. Comparison (Relational) Operators 

3. Bitwise Operators 

4. Logical Operators 

5. Assignment Operators 

6. Special Operators 

JavaScript Arithmetic Operators 

Arithmetic operators are used to perform arithmetic operations on the operands. The following 
operators are known as JavaScript arithmetic operators. 

Operator Description Example 

+ Addition 10+20 = 30 

- Subtraction 20-10 = 10 

* Multiplication 10*20 = 200 

/ Division 20/10 = 2 



% Modulus (Remainder) 20%10 = 0 

++ Increment var a=10; a++; Now a = 11 

-- Decrement var a=10; a--; Now a = 9 

JavaScript Comparison Operators 

The JavaScript comparison operator compares the two operands. The comparison operators are 
as follows: 

Operator Description Example 

== Is equal to 10==20 = false 

!= Not equal to 10!=20 = true 

!== Not Identical 20!==20 = false 

> Greater than 20>10 = true 

>= Greater than or equal to 20>=10 = true 

< Less than 20<10 = false 

<= Less than or equal to 20<=10 = false 

JavaScript Bitwise Operators 

The bitwise operators perform bitwise operations on operands. The bitwise operators are as 
follows: 

Operator Description Example 

& Bitwise AND (10==20 & 20==33) = false 

| Bitwise OR (10==20 | 20==33) = false 

~ Bitwise NOT (~10) = -10 

JavaScript Logical Operators 

The following operators are known as JavaScript logical operators. 



Operator Description Example 

&& Logical AND (10==20 && 20==33) = false 

|| Logical OR (10==20 || 20==33) = false 

! Logical Not !(10==20) = true 

JavaScript Assignment Operators 

The following operators are known as JavaScript assignment operators. 

Operator Description Example 

= Assign 10+10 = 20 

+= Add and assign var a=10; a+=20; Now a = 30 

-= Subtract and assign var a=20; a-=10; Now a = 10 

*= Multiply and assign var a=10; a*=20; Now a = 200 

/= Divide and assign var a=10; a/=2; Now a = 5 

%= Modulus and assign var a=10; a%=2; Now a = 0 

JavaScript Special Operators 

The following operators are known as JavaScript special operators. 

Operator Description 

(?:) Conditional Operator returns value based on the condition. It is like if-else. 

, Comma Operator allows multiple expressions to be evaluated as single statement. 

delete Delete Operator deletes a property from the object. 

in In Operator checks if object has the given property 

new creates an instance (object) 

typeof checks the type of object. 



void it discards the expression's return value. 

 

Ex1: 

Program of addition, subtraction, multiply, and division in Java Script  

<!doctype html> 

<html> 

<body> 

<script> 

  var numOne=12, numTwo=10, res; 

  res = numOne + numTwo; 

  document.write("Add = " + res + "<br/>"); 

  res = numOne - numTwo; 

  document.write("Subtract = " + res + "<br/>"); 

  res = numOne * numTwo; 

  document.write("Multiply = " + res + "<br/>"); 

  res = numOne/numTwo; 

  document.write("Divide = " + res + "<br/>"); 

</script> 

</body> 

</html> 

Output: 

Add = 22 
Subtract = 2 
Multiply = 120 
Divide = 1.2 

 

Different ways to declare Variables in JavaScript: 

 Using var 
 Using let 



 Using const 
 Using nothing 

<!DOCTYPE html> 
<html> 
<body> 
<h2>JavaScript Variables</h2> 
<p>In this example, x, y, and z are variables.</p> 
<p id="demo"></p> 
<script> 
 let x = 5; 
 let y = 6; 
 let z = x + y; 
document.getElementById("demo").innerHTML ="The value of z is: " + z; 
document.write("The value of z is:" + z); 
</script> 
</body> 
</html> 
 
JavaScript Variables 

In this example, x, y, and z are variables. 

The value of z is: 11 

The value of z1 is:11 

 

When to Use JavaScript var? 

Always declare JavaScript variables with var, let, or const. 

The var keyword is used in all JavaScript code from 1995 to 2015. 

The let and const keywords were added to JavaScript in 2015. 

If you want your code to run in older browsers, you must use var. 

 

When to Use JavaScript const? 

If you want a general rule: always declare variables with const. 

If you think the value of the variable can change, use let. 

In this example, price1, price2, and total, are variables: 



Example 

const price1 = 5; 

const price2 = 6; 

let total = price1 + price2; 

 

The two variables price1 and price2 are declared with the const keyword. 

These are constant values and cannot be changed. 

The variable total is declared with the let keyword. 

This is a value that can be changed. 

 

Different Kinds of Loops 

JavaScript supports different kinds of loops: 

 for - loops through a block of code a number of times 
 while - loops through a block of code while a specified condition is true 
 do/while - also loops through a block of code while a specified condition is true 

The For Loop 

The for statement creates a loop with 3 optional expressions: 

for (expression 1; expression 2; expression 3) 
 { 
  // code block to be executed 
} 

Expression 1(Initialization) is executed (one time) before the execution of the code block. 

Expression 2(Condition) defines the condition for executing the code block. 

Expression 3(Increment/Decrement) is executed (every time) after the code block has been 
executed. 

<!DOCTYPE html> 
<html> 
<body> 
 
<h2>JavaScript For Loop</h2> 
 



<p id="demo"></p> 
 
<script> 
let text = ""; 
for (let i = 0; i < 5; i++)  
{ 
  text += "The number is " + i + "<br>"; 
} 
document.getElementById("demo").innerHTML = text; 
</script> 
</body> 
</html> 

From the example above, you can read: 

Expression 1 sets a variable before the loop starts (let i = 0). 

Expression 2 defines the condition for the loop to run (i must be less than 5). 

Expression 3 increases a value (i++) each time the code block in the loop has been executed. 

Another Example: 
 
<!DOCTYPE html> 
<html> 
<body> 
 
<h2>JavaScript For Loop</h2> 
 
<p id="demo"></p> 
 
<script> 
const p_lang = ["html", "css", "java script", "java", "c", "c++"]; 
 
let text = ""; 
for (let i = 0; i < p_lang.length; i++) { 
  text += p_lang[i] + "<br>"; 
} 
 
document.getElementById("demo").innerHTML = text; 
</script> 
 
</body> 
</html> 
 



JavaScript While Loop 

Loops can execute a block of code as long as a specified condition is true. 

The While Loop: The while loop loops through a block of code as long as a specified condition is 
true. 

Syntax 

while (condition) { 

  // code block to be executed 

} 

Example 

In the following example, the code in the loop will run, over and over again, as long as a 
variable (i) is less than 10: 

<!DOCTYPE html> 
<html> 
<body> 
 
<h2>JavaScript While Loop</h2> 
 
<p id="demo"></p> 
 
<script> 
let text = ""; 
let i = 0; 
while (i < 10) { 
  text += "<br>The number is " + i; 
  i++; 
} 
document.getElementById("demo").innerHTML = text; 
</script> 
 
</body> 
</html> 
 

JavaScript While Loop 
The number is 0 
The number is 1 
The number is 2 
The number is 3 
The number is 4 



The number is 5 
The number is 6 
The number is 7 
The number is 8 
The number is 9 

 
If you forget to increase the variable used in the condition, the loop will never end. This will 
crash your browser. 
 

 

The Do While Loop 

The do while loop is a variant of the while loop. This loop will execute the code block once, 
before checking if the condition is true, then it will repeat the loop as long as the condition is 
true. 

Syntax 

do { 

  // code block to be executed 

} 

while (condition); 

Example 

The example below uses a do while loop. The loop will always be executed at least once, even if 
the condition is false, because the code block is executed before the condition is tested: 

<!DOCTYPE html> 
<html> 
<body> 
 
<h2>JavaScript Do While Loop</h2> 
 
<p id="demo"></p> 
 
<script> 
let text = "" 
let i = 0; 
 
do { 
  text += "<br>The number is " + i; 
  i++; 
} 



while (i < 10);   
 
document.getElementById("demo").innerHTML = text; 
</script> 
 
</body> 
</html> 
 
 
Output: 

JavaScript Do While Loop 

The number is 0 
The number is 1 
The number is 2 
The number is 3 
The number is 4 
The number is 5 
The number is 6 
The number is 7 
The number is 8 
The number is 9 

JavaScript Functions 

A JavaScript function is a block of code designed to perform a particular task. 

A JavaScript function is executed when "something" invokes it (calls it). 

 

Why Functions? 

Code Reusability: With functions you can reuse code and we can call a function several times so 
it saves coding.  

You can write code that can be used many times. 

You can use the same code with different arguments(input values), to produce different results. 

Less Coding: It makes our program compact. We don’t need to write many lines of code each 
time to perform a common task.  

 

 

 



JavaScript Function Syntax 

A JavaScript function is defined with the function keyword, followed by a name, followed by 
parentheses (). 

Function names can contain letters, digits, underscores, and dollar signs (same rules as 
variables). 

The parentheses may include arguments/parameter names separated by commas: 
(parameter1, parameter2, ...) 

The code to be executed, by the function, is placed inside curly brackets: {} 

function name(parameter1, parameter2, parameter3)  

{ 
  // code to be executed 
} 

Function parameters are listed inside the parentheses () in the function definition. 

Function arguments are the values received by the function when it is invoked/call. 

Inside the function, the arguments (the parameters) behave as local variables. 

Example: 

<!DOCTYPE html> 
<html> 
<body> 
<h1>JavaScript Functions</h1> 
 
<p>Call a function which performs a calculation and returns the result:</p> 
 
<p id="demo"></p> 
 
<script> 
function myFunction(p1, p2) { 
  return p1 * p2; 
} 
let n1=+prompt("Enter n1"); 
let n2=+prompt("Enter n2"); 
let result = myFunction(n1,n2); 
document.getElementById("demo").innerHTML = result; 
</script> 
 



</body> 
</html> 
 
Output: 

JavaScript Functions 

Call a function which performs a calculation and returns the result: 

24 

Function Invocation 

The code inside the function will execute when "something" invokes (calls) the function: 

 When an event occurs (when a user clicks a button) 
 When it is invoked (called) from JavaScript code 
 Automatically (self invoked) 

Function Return 

When JavaScript reaches a return statement, the function will stop executing. 

If the function was invoked from a statement, JavaScript will "return" to execute the code after 
the invoking statement. 

Functions often compute a return value. The return value is "returned" back to the "caller":

 

The () Operator 

The () operator invokes (calls) the function: 

<!DOCTYPE html> 
<html> 
<body> 
 
<h1>JavaScript Functions</h1> 
 
<p>Invoke (call) a function that converts from Fahrenheit to Celsius:</p> 
<p id="demo"></p> 
 
<script> 
function FahToCelsius(f)      //FahToCelsius(77) 
{ 



  return (5/9) * (f-32); 
} 
let n1=+prompt("Enter the value of n1 in fah"); 
let value = FahToCelsius(n1);    //fun calling 
document.getElementById("demo").innerHTML = value; 
</script> 
 
</body> 
</html> 

Accessing a function with incorrect parameters can return an incorrect answer: 

Suppose 77 is not passed here then it will return NaN 

Accessing a function without () returns the function and not the function result: 

<!DOCTYPE html> 
<html> 
<body> 
 
<h1>JavaScript Functions</h1> 
 
<p>Accessing a function without () returns the function and not the function result:</p> 
<p id="demo"></p> 
 
<script> 
function toCelsius(f) { 
  return (5/9) * (f-32); 
} 
 
let value = toCelsius; 
document.getElementById("demo").innerHTML = value; 
</script> 
 
</body> 
</html> 
 
OutPut: 

JavaScript Functions 

Accessing a function without () returns the function and not the function result: 

function toCelsius(f) { return (5/9) * (f-32); } 



 

Unit-5  

The HTML DOM (Document Object Model) 

When a web page is loaded, the browser creates a Document Object Model of the page. 

The HTML DOM model is constructed as a tree of Objects: 

The HTML DOM Tree of Objects 

 

With the object model, JavaScript gets all the power it needs to create dynamic HTML: 

 JavaScript can change all the HTML elements in the page 
 JavaScript can change all the HTML attributes in the page 
 JavaScript can change all the CSS styles in the page 
 JavaScript can remove existing HTML elements and attributes 
 JavaScript can add new HTML elements and attributes 

What is the DOM? 

The DOM is a W3C (World Wide Web Consortium) standard. 

The DOM defines a standard for accessing documents: 

"The W3C Document Object Model (DOM) is a platform and language-neutral interface that 
allows programs and scripts to dynamically access and update the content, structure, and style 
of a document." 

 



The W3C DOM standard is separated into 3 different parts: 

 Core DOM - standard model for all document types 
 XML DOM - standard model for XML documents 
 HTML DOM - standard model for HTML documents 

What is the HTML DOM? 

The HTML DOM is a standard object model and programming interface for HTML. It defines: 

 The HTML elements as objects 
 The properties of all HTML elements 
 The methods to access all HTML elements 
 The events for all HTML elements 

In other words: The HTML DOM is a standard for how to get, change, add, or delete HTML 
elements. 

Methods of document object 

We can access and change the contents of document by its methods. 

The important methods of document object are as follows: 

Method Description 

write("string") writes the given string on the doucment. 

writeln("string") writes the given string on the doucment with newline character at 

the end. 

getElementById() returns the element having the given id value. 

getElementsByName() returns all the elements having the given name value. 

getElementsByTagName() returns all the elements having the given tag name. 

getElementsByClassName() returns all the elements having the given class name. 

 



1. Example of getElementsById() method:  

<!DOCTYPE html> 

<html> 
<body> 
 
<h2>JavaScript HTML DOM</h2> 
 
<p id="intro">Finding HTML Elements by Id</p> 
<p>This example demonstrates the <b>getElementsById</b> method.</p> 
 
<p id="demo"></p> 
 
<script> 
const element = document.getElementById("intro"); 
 
document.getElementById("demo").innerHTML =  
"The text from the intro paragraph is: " + element.innerHTML; 
</script> 
</body> 
</html> 
 
2. Using  getElementsByTagName() method: 
<!DOCTYPE html> 
<html> 
<body> 
 
<h2>JavaScript HTML DOM</h2> 
 
<p>Finding HTML Elements by Tag Name.</p> 
<p>This example demonstrates the <b>getElementsByTagName</b> method.</p> 
 
<p id="demo"></p> 
 
<script> 
const element = document.getElementsByTagName("p"); 
 
document.getElementById("demo").innerHTML = 'The text in first paragraph (index 0) is: ' + 
element[0].innerHTML; 
</script> 
 
</body> 
</html> 
 
Try more CSS properties and change image, padding, border, and margin 
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